Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 921: 171016, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38369142

RESUMO

Climate change can affect precipitation patterns, temperature, and the hydrological cycle, consequently influencing the dynamics of nitrogen (N) within aquatic ecosystems. In this study, multiple stable isotopes (15N-NO3/18O-NO3 and 2H-H2O/18O-H2O) were used to investigate the N sources and flowpath within the Bogang stream in South Korea. Within the vicinity of the stream with complex land use where various N sources were present, four end-members (rainfall, soil, sewage, and livestock) were sampled and examined. Consequently, spatial-temporal variations of the N sources were observed dependent on the type of land use. During the dry season, sewage accounted for the dominant N source, ranging from 62.2 % to 80.2 %. In contrast, nonpoint sources increased significantly across most sites during the wet season (10.3-41.6 % for soil; 6.3-35.2 % for livestock) compared to the dry season (7.7-28.5 % for soil; 6-13.2 % for livestock). However, sewage (78.7 %) remains dominant, representing the largest ratio at the site downstream of the wastewater treatment plant during the wet season. This ratio showed a notable difference from the calculated N loading ratio of 52.2 %, especially for livestock. This suggests that a significant potential for N legacy effects, given that groundwater flow is likely to be the primary hydrological pathway delivering N to rivers. This study will help to develop water resource management strategies by understanding how the interaction between N sources and hydrological process responds to climate change within sub-basins.

2.
Sci Rep ; 14(1): 3954, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368500

RESUMO

This study investigates the impact of water levels and soil texture on the migration and transformation of nitrate (NO3--N) and ammonium (NH4+-N) within a soil column. The concentrations of NO3--N gradually decreased from an initial concentration of 34.19 ± 0.86 mg/L to 14.33 ± 0.77 mg/L on day 70, exhibiting fluctuations and migration influenced by water levels and soil texture. Higher water levels were associated with decreased NO3--N concentrations, while lower water levels resulted in increased concentrations. The retention and absorption capacity for NO3--N were highest in fine sand soil, followed by medium sand and coarse sand, highlighting the significance of soil texture in nitrate movement and retention. The analysis of variance (ANOVA) confirmed statistically significant variations in pH, dissolve oxygen and oxidation-reduction potential across the soil columns (p < 0.05). Fluctuating water levels influenced the migration and transformation of NO3--N, with distinct patterns observed in different soil textures. Water level fluctuations also impacted the migration and transformation of NH4+-N, with higher water levels associated with increased concentrations and lower water levels resulting in decreased concentrations. Among the soil types considered, medium sand exhibited the highest absorption capacity for NH4+-N. These findings underscore the significant roles of water levels, soil texture, and soil type in the migration, transformation, and absorption of nitrogen compounds within soil columns. The results contribute to a better understanding of nitrogen dynamics under varying water levels and environmental conditions, providing valuable insights into the patterns of nitrogen migration and transformation in small-scale soil column experiments.

3.
Environ Res ; 248: 118386, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316387

RESUMO

In the context of global warming, increasingly widespread and frequent freezing and thawing cycles (FTCs) will have profound effects on the biogeochemical cycling of soil carbon and nitrogen. FTCs can increase soil greenhouse gas (GHG) emissions by reducing the stability of soil aggregates, promoting the release of dissolved organic carbon, decreasing the number of microorganisms, inducing cell rupture, and releasing carbon and nitrogen nutrients for use by surviving microorganisms. However, the similarity and disparity of the mechanisms potentially contributing to changes in GHGs have not been systematically evaluated. The present study consolidates the most recent findings on the dynamics of soil carbon and nitrogen, as well as GHGs, in relation to FTCs. Additionally, it analyzes the impact of FTCs on soil GHGs in a systematic manner. In this study, particular emphasis is given to the following: (i) the reaction mechanism involved; (ii) variations in soil composition in different types of land (e.g., forest, peatland, farmland, and grassland); (iii) changes in soil structure in response to cycles of freezing temperatures; (iv) alterations in microbial biomass and community structure that may provide further insight into the fluctuations in GHGs after FTCs. The challenges identified included the extension of laboratory-scale research to ecosystem scales, the performance of in-depth investigation of the coupled effects of carbon, nitrogen, and water in the freeze-thaw process, and analysis of the effects of FTCs through the use of integrated research tools. The results of this study can provide a valuable point of reference for future experimental designs and scientific investigations and can also assist in the analysis of the attributes of GHG emissions from soil and the ecological consequences of the factors that influence these emissions in the context of global permafrost warming.


Assuntos
Gases de Efeito Estufa , Solo , Carbono/análise , Dióxido de Carbono/análise , Ecossistema , Congelamento , Gases de Efeito Estufa/análise , Metano/análise , Nitrogênio/análise , Óxido Nitroso
4.
Waste Manag ; 176: 85-104, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266478

RESUMO

Application of biosolids to agricultural land has gained increasing attention due to their rich nutrient content. There are a variety of treatment processes for converting sewage sludge to biosolids. Different treatment processes can change the physicochemical properties of the raw sewage sludge and affect the dynamics of nutrient release in biosolids-amended soils. This paper reviews heat drying, alkaline treatment, and composting as biosolids treatment processes and discusses the effects of these treatments on biosolid nitrogen (N) content and availability. Most N in the biosolids remain in organic forms, regardless of biosolids treatment type but considerable variation exists in the mean values of total N and mineralizable N across different types of biosolids. The highest mean total N content was recorded in heat-dried biosolids (HDB) (4.92%), followed by composted biosolids (CB) (2.25%) and alkaline-treated biosolids (ATB) (2.14%). The mean mineralizable N value was similar between HDB and ATB, with a broader range of mineralizable N in ATB. The lowest N availability was observed in CB. Although many models have been extensively studied for predicting potential N mineralization in soils amended with organic amendments, limited research has attempted to model soil N mineralization following biosolids application. With biosolids being a popular, economical, and eco-friendly alternative to chemical N-fertilizers, understanding biosolids treatment effects on biosolids properties is important for developing a sound biosolids management system. Moreover, modeling N mineralization in biosolids-amended soils is essential for the adoption of sustainable farming practices that maximize the agronomic value of all types of biosolids.


Assuntos
Compostagem , Poluentes do Solo , Solo/química , Esgotos/química , Biossólidos , Nitrogênio/análise , Temperatura Alta , Poluentes do Solo/análise
5.
Plants (Basel) ; 12(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005763

RESUMO

The ground cover rice production system (GCRPS) has been proposed as a potential solution to alleviate seasonal drought and early low-temperature stress in hilly mountainous areas; clarifying its impact on crop growth is crucial to enhance rice productivity in these areas. A two-year (2021-2022) field experiment was conducted in the hilly mountains of southwest China to compare the effects of the traditional flooding paddy (Paddy) and GCRPS under three different nitrogen (N) management practices (N1, zero-N fertilizer; N2, 135 kg N ha-1 as a urea-based fertilizer; and N3, 135 kg N ha-1 with a 3:2 base-topdressing ratio as urea fertilizer for the Paddy or a 1:1 basal application ratio as urea and manure for GCRPS) on soil water storage, soil mineral N content and crop growth parameters, including plant height, tiller numbers, the leaf area index (LAI), aboveground dry matter (DM) dynamics and crop yield. The results showed that there was a significant difference in rainfall between the two growth periods, with 906 mm and 291 mm in 2021 and 2022, respectively. While GCRPS did not significantly affect soil water storage, soil mineral N content, and plant height, it led to a reduction in partial tiller numbers (1.1% to 31.6%), LAI (0.6% to 20.4%), DM (4.4% to 18.8%), and crop yield (7.4% to 22.0%) in 2021 (wet year) compared to the Paddy. However, in 2022 (dry year), GCRPS led to an increase in tiller numbers (13.7% to 115.4%), LAI (17.3% to 81.0%), DM (9.0% to 62.6%), and crop yield (2.9% to 9.2%) compared to the Paddy. Structural equation modeling indicated that GCRPS significantly affected tiller numbers, plant height, LAI, DM, and productive tiller numbers, which indirectly influenced crop yield by significantly affecting tiller numbers and productive tiller numbers in 2022. Overall, the effects of GCRPS on soil water and N dynamics were not significant. In 2021, with high rainfall, no drought, and no early, low-temperature stress, the GCRPS suppressed crop growth and reduced yield, while in 2022, with drought and early low-temperature stress and low rainfall, the GCRPS promoted crop growth and increased yield, with tiller numbers and productive tiller numbers being the key factors affecting crop yield.

6.
J Hazard Mater ; 460: 132514, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708652

RESUMO

Microplastics, a growing environmental concern, impact soil inorganic nitrogen (N) transformation, specifically affecting water-extractable nitrate N (NO3--N) and ammonium N (NH4+-N). However, inconsistencies among relevant findings necessitate a systematic analysis. Accordingly, the present meta-analysis addresses these discrepancies by evaluating the effects of microplastics on soil inorganic N and identifying key influencing factors. Our meta-analysis of 216 paired observations from 47 studies demonstrates microplastics exposure causes an overall significant reduction of 7.89% in soil NO3--N concentration, but has no significant impact on NH4+-N concentration. Subgroup analysis further revealed effects of microplastics on soil inorganic N were modulated by microplastics characteristics, experimental conditions (exposure time, experimental temperature, plant effects), and soil properties (soil texture, initial soil pH, initial soil organic carbon, soil total N concentration). We found that microplastics exposure above 27 â„ƒ enhances soil NO3--N concentration, a finding linked to specific soil properties and conditions, underscoring the impacts of global warming. Importantly, the microplastics polymer type was the most influential predictor of effects on soil NO3--N concentration, while soil NH4+-N concentration was primarily affected by soil texture and microplastics type. These findings illuminate the complex effects of microplastics on soil inorganic N, informing soil management amid increasing microplastics pollution.

7.
Front Plant Sci ; 14: 1230023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746008

RESUMO

Long-term application of nitrogen (N) fertilizer adversely degrades soil and decreases crop yield. Biochar amendment with N fertilizer not only can increase yield but also can improve the soil. A 3-year field experiment was conducted to determine the effect of biochar doses with N fertilizer on maize yield and soil N and water dynamics under border irrigation (BI) and drip irrigation (DI) methods. Treatments were 260 kg N ha-1 without biochar addition and combined with low, medium, and high doses of biochar, namely, 15.5 t ha-1, 30.7 t ha-1, and 45.3 t ha-1 (NB0, NB1, NB2, and NB3), respectively. The biochar doses and irrigation methods significantly (p < 0.05) increased maize growth and yield characteristics, irrigation water use efficiency (IWUE), and fertilizer N use efficiency (FNUE) and enhanced the soil properties. In the BI and DI method, the NB1, NB2, and NB3 treatments increased yield by 4.96%-6.10%, 8.36%-9.85%, and 9.65%-11.41%, respectively, compared to NB0. In terms of IWUE and FNUE, the non-biochar treatment had lower IWUE and FNUE compared to biochar combined with N fertilizer treatments under both BI and DI methods. In the BI method, the IWUE in NB2 and NB3 ranged from 3.36 to 3.43 kg kg-1, and in DI, it was maximum, ranging from 5.70 to 5.94 kg kg-1. Similarly, these medium and high doses of biochar increased the FNUE of maize. The FNUEs in NB2 and NB3 under BI ranged from 38.72 to 38.95 kg kg-1 and from 38.89 to 39.58 kg kg-1, while FNUEs of these same treatments under DI ranged from 48.26 to 49.58 kg kg-1 and from 48.92 to 50.28 kg kg-1. The effect of biochar was more obvious in DI as compared to the BI method because soil water content (SWC) and soil N concentrations (SNCs) were higher at rhizosphere soil layers under DI. Biochar improved SWC and SNC at 0-20 cm and 20-40 cm soil layers and decreased below 60-cm soil layers. In contrast, despite biochar-controlled SWC and SNCs, still, values of these parameters were higher in deeper soil layers. In the BI method, the SNCs were higher at 60-80 cm and 80-100 cm compared to the top and middle soil layers. Depth-wise results of SNC demonstrated that the biochar's ability to store SNC was further enhanced in the DI method. Moreover, biochar increased soil organic matter (OM) and soil aggregate stability and maintained pH. The NB0 treatment increased soil OM by 11.11%-14.60%, NB2 by 14.29%-19.42%, and NB3 by 21.98%-23.78% in both irrigation methods. This increased OM resulted in improved average soil aggregates stability by 2.45%-11.71% and 4.52%-14.66% in the BI and DI method, respectively. The results of our study revealed that combined application of N fertilizer with a medium dose of biochar under the DI method would be the best management practice, which will significantly increase crop yield, improve SWC, enrich SNC and OM, improve soil structure, and maintain pH.

8.
Water Res ; 235: 119882, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36947927

RESUMO

Identifying the distribution of multi-trophic microbiota under the complicated hydrodynamic characteristics of channel confluences and evaluating the microbial contributions to biogeochemical processes are vital for river regulation and ecological function protection. However, relevant studies mainly focus on bacterial community distribution in confluence, neglecting the essential role of multi-trophic microbiota in the aquatic ecosystems and biogeochemical processes. To address this knowledge gap, this study investigated the distribution of multi-trophic microbiota and the underlying assembly process under the hydraulic characteristics in the confluence and described the direct and indirect effects of multi-trophic microbiota on the nitrogen dynamics. Results revealed that, in a river confluence, eukaryotic communities were governed by deterministic processes (52.4%) and bacterial communities were determined by stochastic processes (74.3%). The response of higher trophic levels to environmental factors was intensively higher than that of lower trophic microbiota, resulting in higher trophic microbiota were significantly different between regions with varied environmental conditions (P < 0.05). Flow velocity was the driving force controlling the assembly and composition of multi-trophic microbiota and interactions among multi-trophic levels, and further made a significant difference to nitrogen dynamics. In regions with lower flow velocity, interactions among multi-trophic levels were more complex. There were intense nitrate and nitrite reduction and anammox reactions via direct impacts of protozoan and metazoan and the top-down control (protozoan and metazoan prey on heterotrophic bacteria) among multi-trophic microbiota. Results and findings reveal the ecological effect on river nitrogen removal in a river confluence under complex hydraulic conditions and provide useful information for river management.


Assuntos
Microbiota , Nitrogênio , Animais , Bactérias , Nitratos , Rios/química
9.
Environ Sci Pollut Res Int ; 29(55): 82903-82916, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35759093

RESUMO

Coastal rivers contributed the majority of anthropogenic nitrogen (N) loads to coastal waters, often resulting in eutrophication and hypoxia zones. Accurate N source identification is critical for optimizing coastal river N pollution control strategies. Based on a 2-year seasonal record of dual stable isotopes ([Formula: see text] and [Formula: see text]) and water quality parameters, this study combined the dual stable isotope-based MixSIAR model and the absolute principal component score-multiple linear regression (APCS-MLR) model to elucidate N dynamics and sources in two coastal rivers of Hangzhou Bay. Water quality/trophic level indices indicated light-to-moderate eutrophication status for the studied rivers. Spatio-temporal variability of water quality was associated with seasonal agricultural, aquaculture, and domestic activities, as well as the seasonal precipitation pattern. The APCS-MLR model identified soil + domestic wastewater (69.5%) and aquaculture tailwater (22.2%) as the major nitrogen pollution sources. The dual stable isotope-based MixSIAR model identified soil N, aquaculture tailwater, domestic wastewater, and atmospheric deposition N contributions of 35.3 ±21.1%, 29.7 ±17.2%, 27.9 ±14.5%, and 7.2 ±11.4% to riverine [Formula: see text] in the Cao'e River (CER) and 34.4 ±21.3%, 29.5 ±17.2%, 27.4 ±14.7%, and 8.7 ±12.8% in the Jiantang River (JTR), respectively. The APCS-MLR model and the dual stable isotope-based MixSIAR model showed consistent results for riverine N source identification. Combining these two methods for riverine N source identifications effectively distinguished the mix-source components from the APCS-MLR method and alleviated the high cost of stable isotope analysis, thereby providing reliable N source apportionment results with low requirements for water quality sampling and isotope analysis costs. This study highlights the importance of soil N management and aquaculture tailwater treatment in coastal river N pollution control.


Assuntos
Rios , Poluentes Químicos da Água , Nitrogênio/análise , Monitoramento Ambiental/métodos , Águas Residuárias/análise , Baías , Poluentes Químicos da Água/análise , Solo , Isótopos/análise , China , Isótopos de Nitrogênio/análise , Nitratos/análise
10.
Molecules ; 27(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566200

RESUMO

In this work it is demonstrated that enantiomerically enriched N-alkyl 2-oxazolinylazetidines undergo exclusive α-lithiation, and that the resulting lithiated intermediate is chemically stable but configurationally labile under the given experimental conditions that afford enantioenriched N-alkyl-2,2-disubstituted azetidines. Although this study reveals the configurational instability of the diastereomeric lithiated azetidines, it points out an interesting stereoconvergence of such lithiated intermediates towards the thermodynamically stable species, making the overall process highly stereoselective (er > 95:5, dr > 85:15) after trapping with electrophiles. This peculiar behavior has been rationalized by considering the dynamics at the azetidine nitrogen atom, the inversion at the C-Li center supported by in situ FT-IR experiments, and DFT calculations that suggested the presence of η3-coordinated species for diastereomeric lithiated azetidines. The described situation contrasted with the demonstrated stability of the smaller lithiated aziridine analogue. The capability of oxazolinylazetidines to undergo different reaction patterns with organolithium bases supports the model termed "dynamic control of reactivity" of relevance in organolithium chemistry. It has been demonstrated that only 2,2-substituted oxazolinylazetidines with suitable stereochemical requirements could undergo C=N addition of organolithiums in non-coordinating solvents, leading to useful precursors of chiral (er > 95:5) ketoazetidines.


Assuntos
Azetidinas , Lítio , Nitrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo
11.
Microorganisms ; 10(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630503

RESUMO

Although increasing attention has been attracted to the study and application of biofloc technology (BFT) in aquaculture, few details have been reported about the bacterial community of biofloc and its manipulation strategy for commercial shrimp production. An 8-week trial was conducted to investigate the effects of three input C/N ratios (8:1, 12:1 and 16:1) on the bacterial community of water biofloc and shrimp gut in a commercial BFT tank system with intensive aquaculture of P. vannamei. Each C/N ratio group had three randomly assigned replicate tanks (culture water volume of 30 m3), and each tank was stocked with juvenile shrimp at a density of 300 shrimp m-3. The tank systems were operated with zero-water exchange, pH maintenance and biofloc control. During the trial, the microbial biomass and bacterial density of water biofloc showed similar variation trends, with no significant difference under respective biofloc control measures for the three C/N ratio groups. Significant changes were found in the alpha diversity, composition and relative abundance of bacterial communities across the stages of the trial, and they showed differences in water biofloc and shrimp gut among the three C/N ratio groups. Meanwhile, high similarity could be found in the composition of the bacterial community between water biofloc and shrimp gut. Additionally, nitrogen dynamics in culture water showed some differences while shrimp performance showed no significant difference among the three C/N ratio groups. Together, these results confirm that the manipulation of input C/N ratio could affect the bacterial community of both water biofloc and shrimp gut in the environment of a commercial BFT system with intensive production of P. vannamei. Moreover, there should be different operations for the nitrogen dynamics and biofloc management during shrimp production process under different C/N ratios.

12.
J Environ Manage ; 312: 114932, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35338988

RESUMO

Paddy surface water is the direct source of artificial drainage and surface runoff leading to N loss from rice paddy fields. Quantifying the N dynamics in paddy surface water on a large scale is challenging because of model deficiencies and the limitations of field measurements. This study analyzed the N dynamics and the influencing factors in paddy surface water in the three main Chinese rice-growing regions: Northeast Plain, Yangtze River Basin, and Southeast Coast. An improved first-order kinetic model was proposed to evaluate the total nitrogen (TN) dynamics at a countrywide scale by improving the calculation method of the initial TN concentration (C0) and providing the optimum value of attenuation coefficient (k). The results show that: (1) the average reduction rate of TN concentration on the 7th day after fertilization increased with the growth period (85%, 90%, and 95% during the basal, tillering, and panicle fertilization periods, respectively); (2) the attenuation coefficient k for the growth periods was ranked as follows: panicle fertilization period > tillering fertilization period > basal fertilization period. The Yangtze River Basin had the highest average k value (0.31-0.34), followed by the Southeast Coast (0.24-0.41) and Northeast Plain (0.22-0.30); and (3) the improved first-order kinetic model performed well in the N dynamics estimation (R2 > 0.6). High TN concentration with high fertilizer application amounts and precipitation caused the Yangtze River Basin to have a high N runoff loss risk. The proposed universal model realizes the simulation of N dynamics from a single site to multi-sites while greatly saving multi-site monitoring costs. This study provides a basis for effectively optimizing N management and preventing N loss in rice paddies.


Assuntos
Nitrogênio , Oryza , Agricultura/métodos , China , Fertilizantes , Nitrogênio/análise , Fósforo/análise , Água/análise
13.
Chemosphere ; 295: 133904, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35157877

RESUMO

Biochar application to chemical-amended paddy soils has been proposed as a potential strategy to enhance nitrogen (N) retention and nitrogen use efficiency (NUE) by crops. However, optimal concentrations for these enhancements and the potential drivers are not well understood. Herein, a column-based pot experiment was carried out to investigate the impacts of reed-biochar application rate on N losses and dynamics in paddy soils treated by chemical fertilizer, and particularly, to explore the dominant factors of the processes. The addition of 2-4% reed-biochar had the most significant effects on mitigating N loss by leaching. Reed-biochar amendment increased soil total N and mineral N (NH4+-N and NO3--N) content, and denitrifying gene abundance, and the increments of those variables were positively related to the application rate. Soil treated with 1-4% reed-biochar at harvest period showed higher gene abundances of ammonia-oxidizing and dissimilatory nitrate reduction to ammonium (DNRA) and higher activity of ß-1,4-N-acetyl-glucosaminidase (NAG) and leucine aminopeptidase compared with the 4-8% application rate. The amoA-AOA gene abundance, NAG activity, and total carbon (C) content were the main predictors of total N and mineral N accumulated leakage. Total C content was the main predictor of soil total N and mineral N content, followed by the pH and NAG activity. These results suggest that adding 2-4% reed-biochar was more beneficial to mitigate N loss and thus enhance soil N storage and availability. This study highlights the importance of understanding how microbial populations mediate N transformation to decipher biochar-driven NUE enhancement in paddy soils.


Assuntos
Nitrogênio , Solo , Carvão Vegetal/química , Fertilizantes/análise , Nitrogênio/análise , Solo/química
14.
Sci Total Environ ; 817: 153020, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026258

RESUMO

Pig manure (PM), wheat straw (WS), compost product (CP) and improved compost product (IC) are very important agricultural organic resources. In this study, their applicability as soil organic fertilizations (OFs) in terms of their properties and influence on soil properties through an incubation experiment and a field verification were evaluated. The property differences indicated that wheat straw has the highest C/N ratio, and compost products contain more aromatic compounds compared with pig manure and wheat straw. The results of incubation experiment showed that OFs promoted the carbon and nitrogen transformation driven by related microorganisms and their functional metabolisms. The PM treatment had the highest proportion of Labile organic carbon to soil organic carbon (LOC/SOC) and ratio of dissolved organic carbon to soil organic carbon (DOC/SOC), while WS treatment had the lowest values. The highest net N mineralization rate and nitrification rate was observed in the WS treatment, but the lowest amounts were under the PM treatment. Additionally, the similar findings were also obtained from the field examination. Therefore, compost products were more applicable in agricultural soil as OF insight from changes in carbon, nitrogen and microbial community. Furthermore, the result of UV-vision showed that the largest amount of aromatic structure was observed in IC relative to CP. It can be concluded that CP was more conducive to fix carbon and provide available nitrogen for crops among four OFs.


Assuntos
Carbono , Nitrogênio , Agricultura/métodos , Animais , Carbono/química , Fertilizantes , Esterco , Solo/química , Suínos
15.
Water Res ; 210: 118000, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34996012

RESUMO

The nitrate (NO3-) contamination of karst aquifers as an important drinking water reservoir is increasing globally. Understanding the behavior of nitrogen (N) in karst aquifers is imperative for effective groundwater quality management. This study combined multiple stable isotopes (δ2H-H2O, δ18O-H2O, δ13C-DIC, δ15N-NO3, and δ18O-NO3), including hydro-chemical data, with a tracer test and a Bayesian isotope mixing (SIAR) model to elucidate the NO3- sources and N cycling within the Babu karst aquifer in Guizhou Province, Southwest China. Nitrate isotopes and SIAR model revealed that manure and sewage, nitrogen fertilizer, and soil organic nitrogen were the three dominant NO3- sources in winter, contributing to 37%, 32%, and 31% to spring NO3-, and 38%, 31%, and 31% to surface water NO3-, respectively. The δ18O-NO3 values of sampled waters ranging from 0.3‰ to 13.7‰ (mean of 7.7 ± 3.0‰; N = 63) and the significant negative correlations between δ15N-NO3 and δ13C-DIC in the spring waters (P < 0.01) revealed that nitrification was the primary N transformation process in the Babu watershed. Whereas, denitrification might still occur locally, confirmed by the enriched values of δ15N-NO3 (14.3 ± 7.6‰; N = 6) and high denitrification extent (46.6 ± 22.2%; N = 6) in the springs from residential areas, and by elevated δ13C-DIC (-11.2 ± 0.6‰; N = 26) and δ15N-NO3 values (18.9 ± 5.2‰; N = 26) in the boreholes. During the base flow period, point-inputs of the AMD-impacted stream and sewage waters, and short transit time (<5 days) were conducive to nitrification processes in the karst conduit, resulting in elevated NO3- concentration and NO3-/Cl- ratio at the watershed outlet. Approximately 50% of NO3- flux at the outlet was derived from nitrification, indicating that a significant extent of nitrification occurred in the NH4+-contaminated karst conduit, which may be a new NO3- source to receiving rivers and lakes. This study provided an integrated method for exploring the N dynamics in contaminated karst aquifers. Moreover, the study highlighted that the point N sources control required particular attention for groundwater protection and restoration.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Teorema de Bayes , Monitoramento Ambiental , Isótopos , Nitratos/análise , Nitrogênio , Poluentes Químicos da Água/análise
16.
Curr Res Microb Sci ; 2: 100035, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841326

RESUMO

This study addresses the plant beneficial enterobacteria present in rice rhizosphere and their efficiency for enhancing nitrogen uptake in rice plant. Using culturable approaches, the population of total diazotrophs present in rhizosphere samples collected from different organic rice fields of Sikkim were studied and recorded in the range between 4.62 to 4.97 log 10 CFU/g soil. All the isolated commonly occurred diazotrophic bacterial isolates were screened based on their ability to fix nitrogen in milligram per gram of sugar consumed under in-vitro condition with the reference check. In addition to nitrogen fixation, plant growth promoting traits such as production of indole-3-acetic acid and gibberellic acid were estimated using spectrophotometric approaches and compared against Bacillus subtilis as reference multi-potent plant growth promoting strain. In-vivo evaluation of these diazotrophic species in rice found improvement in both above and below ground responses in rice plant evaluated by estimating changes in chlorophyll concentration, plant biomass, root architecture, nitrogen uptake, microbial biomass and associated biochemical activity of soil. Further, the selected isolates were identified through DNA targeted analysis of 16S rRNA gene present in diazotrophs and which identified that the isolates belonged to the Enterobacter genus. Statistical models were prepared for deciphering the dynamics of plant growth improvement due to selective enrichment of rhizosphere bacteria and found significant (p<0.05) correlation between soil and plant parameters. This study concludes that Enterobacter spp. present in organic paddy soils of Sikkim having good nitrogen fixing abilities and whose selective enrichment in rhizosphere improved nitrogen uptake and plant growth promotion in rice plant.

17.
Environ Sci Technol ; 55(8): 4616-4628, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33760605

RESUMO

The simulation of nitrogen dynamics in urban channel confluences is essential for the evaluation and improvement of water quality. The omics-based modeling approaches that have been rapidly developed have been increasingly applied to characterize metabolisms of the microbial community and transformation of the associated materials. However, the transport of microorganisms and chemicals within and among different phases, which could be the rate-limiting step for the nitrogen dynamics, are always neglected or oversimplified in omics-based models. Therefore, this study proposes a novel simulation system coupling genomic and hydraulic information to simulate transport and transformation processes and provide predictions of nitrogen dynamics in a confluence. The proposed model was able to capture multiphase mass transport, microbial population dynamics, and nitrogen transformation and accurately predict gene abundances and nitrogen concentrations in both water and sediment; the mean relative errors were all lower than 40%. The model emphasized the importance of transport processes, which contributed more than 90% to gene abundances and chemical concentrations. Moreover, the simulation of reaction rates exhibited the specific nitrogen transformation processes in the confluence. The sulfide oxidation and the nitrate reduction and anaerobic ammonium oxidation, with the participation of the genes nap and hzo, respectively, were promoted as the main processes of nitrate and nitrite reduction.


Assuntos
Desnitrificação , Nitrogênio , Anaerobiose , Genômica , Nitratos , Nitritos , Oxirredução
18.
Sci Total Environ ; 772: 145031, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578140

RESUMO

BACKGROUND: Soil N mineralisation is the process by which organic N is converted into plant-available forms, while soil N immobilisation is the transformation of inorganic soil N into organic matter and microbial biomass, thereafter becoming bio-unavailable to plants. Mechanistic models can be used to explore the contribution of mineralised or immobilised N to pasture growth through simulation of plant, soil and environment interactions driven by management. PURPOSE: Our objectives were (1) to compare the performance of three agro-ecosystems models (APSIM, DayCent and DairyMod) in simulating soil N, pasture biomass and soil water using the same experimental data in three diverse environments (2), to determine if tactical application of N fertiliser in different seasons could be used to leverage seasonal trends in N mineralisation to influence pasture growth and (3), to explore the sensitivity of N mineralisation to changes in N fertilisation, cutting frequency and irrigation rate. KEY RESULTS: Despite considerable variation in model sophistication, no model consistently outperformed the other models with respect to simulation of soil N, shoot biomass or soil water. Differences in the accuracy of simulated soil NH4 and NO3 were greater between sites than between models and overall, all models simulated cumulative N2O well. While tactical N application had immediate effects on NO3, NH4, N mineralisation and pasture growth, no long-term relationship between mineralisation and pasture growth could be discerned. It was also shown that N mineralisation of DayCent was more sensitive to N fertiliser and cutting frequency compared with the other models. MAJOR CONCLUSIONS: Our results suggest that while superfluous N fertilisation generally stimulates immobilisation and a pulse of N2O emissions, subsequent effects through N mineralisation/immobilisation effects on pasture growth are variable. We suggest that further controlled environment soil incubation research may help separate successive and overlapping cycles of mineralisation and immobilisation that make it difficult to diagnose long-term implications for (and associations with) pasture growth.

19.
Ecosystems ; 23: 1-17, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32523423

RESUMO

Watershed nutrient balance studies traditionally focus on annual fluxes. In areas with strongly seasonal, Mediterranean-type climate regimes, riverine nutrient export may be greater during wet seasons when hydrologic forcing overwhelms or bypasses retention mechanisms. By combining data on riverine export with spatially detailed nutrient inputs, we examine how nitrogen (N) supply, retention, and streamflow shape annual and seasonal riverine N export in Oregon's Willamette River Basin (WRB). The WRB has pronounced dry summers and wet winters, and the distribution of farmland, cities and forests create significant spatial variations in N inputs. Local data on N inputs were coupled with streamflow and chemistry to calculate fractional N export for 22 WRB sub-watersheds in the mid-2000s. For the entire WRB, 78% of the N inputs came from agricultural activities, mainly as synthetic fertilizer (69%); the next largest inputs were deposition (10%), alder fixation (5%) and point sources (5%). Crop-specific estimates of fertilizer agreed with county fertilizer sales rates at the high end of extension recommendations. Fractional riverine N export (annual riverine N export / net watershed N input) averaged 38% of net inputs in WRB tributaries, greater than other regions of North America. Fall and winter together accounted for 60-90% of the riverine N export across all watersheds. Summer export was small but was greatest in the watersheds that receive seasonal snowmelt. Large wet season losses, when biotic sinks are less active, result in a relatively high proportion of N inputs exported in this region with a Mediterranean climate and high runoff.

20.
Water Res ; 150: 418-430, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30557828

RESUMO

Accurate source identification is critical for optimizing water pollution control strategies. Although the dual stable isotope (15N-NO3-/18O-NO3-) approach has been widely applied for differentiating riverine nitrogen (N) sources, the relatively short-term (<1 yr) 15N-NO3-/18O-NO3- records typically used in previous studies often hinders rigorous assessment due to high temporal variability associated with watershed N dynamics. Estimated contributions of legacy N sources in soils and groundwater to riverine N export by modeling approaches in many previous studies also lack validation from complementary information, such as multiple stable isotopes. This study integrated three years of multiple stable isotope (15N-NO3-/18O-NO3- and 2H-H2O/18O-H2O) and hydrochemistry measurements for river water, groundwater and rainfall to elucidate N dynamics and sources in the Yongan watershed (2474 km2) of eastern China. Nonpoint source N pollution dominated and displayed considerable seasonal and spatial variability in N forms and concentrations. Information from δ15N-NO3- and δ18O-NO3- indicated that riverine N dynamics were regulated by contributing sources, nitrification and denitrification, as well as hydrological processes. For the three examined catchments and entire watershed, slow subsurface and groundwater flows accounted for >75% of river discharge and were likely the major hydrological pathways for N delivery to the river. Riverine NO3- sources varied with dominant land use (p < 0.001), with the highest contributions of groundwater (60%), wastewater (35%), and soil (50%) occurring in agricultural, residential and forest catchments, respectively. For the entire watershed, groundwater (∼50%) and soil N (>30%) were the dominant riverine NO3- sources, implying considerable potential for N pollution legacy effects. Results were consistent with observed nitrous oxide dynamics and N sources identified in previous modeling studies. As the first attempt to apply multiple isotope tracers for exploring and quantifying N transformation and transport pathways, this study provides an integrated approach for verifying and understanding the N pollution legacy effects observed in many watersheds worldwide. This study highlights that river N pollution control in many watersheds requires particular attention to groundwater restoration and soil N management in addition to N input control strategies.


Assuntos
Nitrogênio , Poluentes Químicos da Água , China , Monitoramento Ambiental , Fertilizantes , Nitratos , Isótopos de Nitrogênio , Rios , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...